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Abstract. In this paper a non-static solution for an elastic fluid distribution has been obtained 
which is conformal to flat space-time. 

1. Introduction 

In our previous paper (Roy and Singh 1973), we gave a static solution for an elastic fluid 
distribution. The purpose of the present investigation is to obtain a non-static solution 
of an elastic fluid distribution which is conformal to flat space-time. A noteworthy 
characteristicofsuch solutions is that theconformal curvature tensor in this case vanishes. 

We shall consider the conformally flat metric in the spherical-polar coordinate 
system, namely, 

The non-vanishing components of the energy-momentum tensor for (1) are given by 

ds2 = eacr,')(dr2 + r2 do2 + r2 sin2% d42  - dt'). (1) 

Einstein's interior field equations have been defined by Rayner (1963) for elastic bodies 
as follows : 

R . . - i R g . .  IJ ZJ : -pA.$.j+$Cf$g,,-giJ = -TI ,  (6) 
and the terms have their usual meaning as in our previous paper. 

2. Solutions of the field equations 

In a comoving coordinate system, we can satisfy the conditions of elastic body motion 
by taking gyj and C!; as functions of the space coordinates only. We regard them as 
known. v and p are scalars and both are functions of r and t .  
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gyj is the metric for an undeformed elastic body and hence we take it as flat, namely 

g:, = 1, t;, = r2,  g:, = r2 sin2& g:, = -1. (7) 
The only nonzero survivingcomponents of Cijkl are C,,,,, C,,,,, C,,,,, C,,,,, C,,,,, 
- c 2 2 3 3 ,  C2244, C,,,, , C,,,, , C,,,, and their values are 

Cl,,,  = v+2p, 

c,,,, = vr2, 

Cl,,, = vr2 sin2& 

c,,,, = (v+2p)r4 
C,,,, = (v+2p)r4 sin2@, 

C,,,, = -vr2, 

C,,,, = (v+2p)r4sin48, 

c1144 = -v, 

C,,,, = - w 2  sin2B, 

c,,,, = v + 2p. 

T i  = p A ~ e - " - ~ v + 2 p ) 1 ~ e - " + ) v A ~ e - " + ( 2 v + p ) ( e - " -  l), (9) 
T: = T: = - ) v l ~ e - " + ) v A ~ e - " + ( 2 v + p ) ( e - " -  l), (10) 

= -pl:e-"+(2v+p)(e-"- l)-)vA:e-"+%v+2p)l:e-", (1 1) 

= - T i  = -pA,A,e-". (12) 

Non-vanishing components of the energy-momentum tensor are given by 

Hence, from equations (2H5) and (9)-(12), we have 

-e-"( + 8) +e-"(% ++P) = p2:e-a -gv + 2,u)~:e-a+)vA:e-a+ (2v +,u)(e-a- 1). 

(13) 

(14) + e-"(a++i2) = -$vA:e-"+)~A~e-~+(2~ +p)(e-"- I), 

The mathematical problem is to solve these four field equations containing five unknowns 
a, p, 1, v and p. But we expect that this problem could always be solved, just as in the 
modified theory of Einstein. Since there is one more unknown than equation, there will 
be one function which can be arbitrarily chosen. This function we choose as 

p ( r , t )  = p( r , t )++  (17) 
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From (1 3) and (14), we get 

From (14) and ( 1  5), we get 

From (18) and (19), we have 

It can be seen that 

u = rt 

is a solution of (20). 
Therefore, a non-static line element for an elastic fluid distribution is given by 

ds2 = e"(dr2 + r2 de2 + r2  sinto d$' - dt2), (22) 

the velocity vector li of the distribution is given by 

li = {[ r2-t2-4tJr 2 (e+!) 2 r err]'l',O,o. [1+r2-t2-4tlr ( f + i) e"'] l"}, (23) 

the density of distribution is given by 

2 
p = f ir t  -2) e-r' 

and the scalars v(r,  t) and p(r ,  t )  are given by 

++(r2 - t 2  -4t/r) e-". (26) 

Thus a non-static generalization of our previous line element for an elastic fluid distri- 
bution has been obtained which is conformal to  flat space-time. 
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